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Abstract-The three-dimensional singular stress field near the terminal point 0 of the crack front edge at the
surface of an elastic body is investigated, using spherical coordinates r, II, tIJ and assuming all three
displacements to be of the form ,'p'P(II, tIJ) where p = distance from the singularity line (crack front edge
or notch edge) and p = given constant. The variational principle governing the displacement distribution on
a unit sphere about point 0, which has previously been obtained from the differential equations of
equilibrium, is now derived more directly from potential energy. The previously developed finite element
method on the unit sphere is used to reduce the problem to the form k(A)X = 0 where X = column matrix of
the nOdal values of displacements on the unit sphere and teA) = square matrix, all coefficients of which are
quadratic polynomials in A. It is proven that the variational principle as well as matrix k must be
nonsymmetric, which means that complex eigenvalues Aare possible. The dependence of A upon Poisson's
ratio v for MOde I cracks whose front edge is normal to the surface is solved numerically and it closely
agrees with the analytical solution of Benthem. Previously unavailable solutions for MOdes II and III and
for cracks (of all mOdes) with inclined front edge and inclined crack plane are also obtained. By energy ftux
argument, it is found that the front edge of a propagating crack (nust terminate at the surface obliquely, at a
certain angle whose dependence upon the inclination of the crack plane is also solved. The angle is the
same for MOdes II and III, but different for MOde I. For this mode, the surface point trails behind the
interior of the propagating crack, while for MOdes II and III it moves ahead. Consequently, a combination
of MOde I with MOdes II and III is impossible at the surface terminal point of a propagating crack whose
plane is orthogonal. When the plane is inclined, the three stress intensity factors can combine only in
certain fixed ratios. The angle of crack edge is a function of the angle of crack plane. Some results with
complex A for two-material interfaces are also given.

I. INTRODUCTION

Crack propagation in thin sheets is undoubtedly influenced by the surface termination of the
crack front edge, where the planar elasticity solution for crack tip singularity does not apply
and the singular stress field is of three-dimensional nature, A similar situation arises when crack
edge intersects a two-material interface. A solution of this problem is of fundamental interest
and has been attempted by many without success. Knowledge of the three-dimensional
singularity is needed to determine the curved shape of the crack front edge across a thin sheet
or plate, and the"energy release rate for the advance of the crack front edge as a whole.

An analytical solution for a Mode I crack whose front edge is normal to the surface has
been obtained by Benthem[l]. Other analytical solutions for orthogonal cracks [2, 3] have also
been presented, but they disagree with the results of Benthem[l] as well as the present paper. A
numerical method for this type of problem has been recently presented in Ref. [4]. This method
is of general applicability and is based on a variational principle for the angular variation of
displacements on a unit sphere about the singular point. In Ref. [4], the variational principle was
derived from differential equations and finite elements were applied on the unit sphere to obtain
a nonlinear eigenvalue problem for the singularity exponent. Some numerical results which
agreed with Benthem's analytical solution were also presented.

In the present paper, the variational principle will be derived more directly from the strain
energy, and it will be proven that this principle as well as the resulting eigenvalue problem must
be nonsymmetric. Complete numerical results for cracks whose front edge is normal to the
surface will be given, not only for Mode I cracks but also for Modes II and III cracks. The main'
objective will, however, be the solution for cracks whose plane as well as front edge are.
inclined. It will be shown that a crack which propagates must in fact be inclined and the angles
of inclination will be determined.
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The basic ideas of the present solution method, which consist in the separation of variables
(postulated in eqns 4 and 9 in the sequel) coupled with a numerical method for a boundary value
problem on a unit sphere around the singular point, were enunciated in Ref. [5], which dealt
with analogous potential theory problems. Similar techniques for solving two-dimensional and
axisymmetric problems have also been employed in Refs. [fr.8, 25], and a partly similar approach
has been used by Swedlow and Karabin[16].

Significant advances, which led to highly accurate analytical solutions, have recently been
made in these potential theory problems by Morrison and Lewis [9], and by Keer and
Parihar[lO, 11]. The former authors succeed in obtaining a tractable differential equation by
virtue of using special coordinates (conical coordinates) suited for the particular problem. Keer
and Parihar's method, utilizing spherical coordinates, appears to have broader application and
involves the use of Green's functions to formulate the problem in terms of a singular integral.
The crucial step is to differentiate this integral equation to get rid of a constant r.h.s. and obtain
an eigenvalue problem, which is then solved numerically by Erdogan and Gupta's method. Keer
and Parihar have also extended their very effective, original and elegant solution to some
three-dimensional singularities (in the interior of an elastic solid) which are irreducible to
potential theory [11]. These solutions provide us with valuable checks.

2. DERIVATION OF VARIATIONAL PRINCIPLE

Consider the displacement and stress fields in a small neighborhood of a singular point 0
which is located at the termination of either one smooth singularity line 00' or several such
singularity lines (see, e.g. Fig. 1). A spherical coordinate system (r, 8, ef» is centered at point 0,
such that the pole direction (8 = 0) coincides with singularity line 00'. Displacements in the r, 0
and ef> directions will be denoted as u, v and w, respectively, and will be considered to be small.
The material is assumed to be linearly elastic, characterized by Young's modulus E and
Poisson's ratio II. The strain energy within volume V of the body is[12]

u = Iv <I> dr dO def>

c{( 1 2 1 1 )2<I> = -2 Q Ur +- Ve +- U +-'-8 w~ +- v cot 8r r rsm r

[ 2 (1 1)2 (1 1 1 )2]+2 Ur + -ve+-u + -.-w~+-vcot8+-u
r r rsm 8 r r

( 1 1)2 (1 1 1)2+ vr - - V +- Ue + - We - - w cot 0 +-.- v~
" r, rsm 8

+(~8 u~ + wr -! W)2] ~ sin 0,sm ,

(1)

(2)

where Q = "'(0.5 - II), C = E/2(1 + II), and the subscripts of u, v, w denote partial derivatives;
e.g. V~ = av/aef>. We shall now consider displacement variations 8u = Eii, 8v = EV, 8w = EW where
E is a variable parameter and ii, V, W are any chosen displacement distributions which are
sufficiently smooth and satisfy all kinematic boundary conditions. According to the principle of
minimum potential energy, the equilibrium state is determined by the variational principle

-Is (p~u + Pe8v +p~8w)dS = 0 (3)

where P,., ptJ> P~ are the distributed loads applied along body surface S.
We shall now assume that there are no loads applied at the body surfaces formed by radial

rays in a small enough neighborhood of point 0, and we shall endeavor to determine all possible
states, called eigenstates, which satisfy the differential equations of equilibrium and boundary
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conditions on radial rays, but not the boundary conditions that may be prescribed at non-radial
surfaces sufficiently remote from point O. According to the principle of superposition, the actual
stress state for given boundary conditions can then be expressed as a linear combination of all
eigenstates. As far as the eigenstates are concerned, the boundary integral in eqn (3) is
irrelevant and may be dropped. Without loss of generality, it may then also be assumed that all
body surfaces are formed by radial rays, as must always be true in close vicinity of point O.

In analogy to the procedure employed in plane elasticity by Knein[13], Williams[14] and
Karp and Karal[l5], and similarly to the technique used for three-dimensional potential theory
in Ref. [5], it will be assumed that in the vicinity of point 0 the displacement eigenstates can be
expressed in the separated form:

u = r"F(8, 4», w= r"H(8, 4» (4)

where A is a certain number, in general complex. Now comes a crucial consideration, similar to
that made previously for the analogous potential theory problem. If eqn (4) were substituted
directly in eqn (3), all terms depending on r would cancel. Then, however, it would be
impossible to satisfy the differential equation of equilibrium in the radial direction, because this
equation follows by integration by parts with respect to r, which would be impossible to
implement since all functions of r would have already been eliminated. Therefore, before
substituting eqn (4) it is necessary to integrate eqn (3) by parts with respect to only r:

5U = cfv {[4>u - :r (4)u)] 5u + 4>u,8ue+ 4>u~8u", + [ 4>v - :r (4)v)] 8v

+ 4>v,5ve+ 4>v~8v", + [ 4>w - :r (4)w)] 8w + 4>w,8we+ 4>w~8w",} dr d8 d4> = 0 (5)

in which the boundary term has been omitted as justified before. Substituting here eqn (4), and
introducing the notations

4>F = C {[QO-A)+2][(A +2)F+Ge+0 cot 8+ si~ 8 H",] -2A(A +2)}

4>F~ = C~8 [~8 F", +(A - I)H]sm sm

4>G= C {[(Q + 2) (A + 2) F + Oe + 0 cot 8+ si~ 8 H", ) - 2(Oe + F) - 2AF] cot 8

- 2(Fe- 0) - A(A + 1)0 - AFe}

4>G, = C { Q[(A + 2)F + Oe + 0 cot 8 + si~ 8 H", ] + 2(Oe + F)}
4>G~ = ,C8 (He - H cot 8 +~8 0",)sm sm

4>H = C{[(He -H cot 8 + si~ 8 0",) cot 8 + 2 (si~ 8 F", - H) + A(A + 1)H + si~ 8 F", ]}

4>H, = C {He -H cot 8 + si~ 8 0",}

4>H~ = s/~8 {Q[(A + 2)F + Oe + 0 cot 8 + s~ 8 H", ] + 2 (si~ 8 H", + 0 cot 8 + F)}

we obtain

(6)

(7)
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where
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(8)

Symbol A denotes the area of the region of the (9, 4» plane occupied by the elastic solid. Note
that ~Ft ••• ~H.. are not partial derivatives of some function ~.

Equation (7) represents the basic variational equation of the problem; i.e. functions F, 0
and H are the solutions of the problem if and only if they satisfy eqn (7) for any kinematically
admissible variations 5F, 50, 5H.

3. TREATMENT OF LINE SINGULARITY

From the three-dimensional singular point 0 there usually emanates a stress singularity line,
such as the front edge of a crack. Let this line coincide with the polar ray, 9 = O. The
displacements near this line usually behave as (rp)P such that rp represents the distance from
the ray (J =0 when (J~ O. Possible choices are p = (J or p =sin (J, of which the latter has been
used in numerical calculation. (Note, however, that p = sin (J cannot be used when the angle
(J = 1T is part of the domain considered and no singularity exists at (J = ?T.) For the crack edge,
the values p = 0, 1/2, 1, 3/2, .. . are generally present, and for notch edges other values of p
would apply.

If p < 1, functions F, 0 and H may obviously exhibit gradient singularity at (J O. Then, if
these functions are approximated numerically, accuracy and the rate of convergence are
adversely affected by the presence of the singularity. From the theory of finite element method
for plane problems it is known, for example, that the rate of convergence in presence of
square-root singularity is only Oh/(h», while in absence of singularity the convergence is
quadratic, O(h 2)[(l7), h being the element size. Thus, an improvement in accuracy and the rate
of convergence may be expected if one sets

0(9,4» =pPg(8, 4», (9)

Then, if there is only one exponent p < 1 present in the solution, functions I, g and h may be
expected to be free of gradient singularity, in which case a quadratic convergence should take
place if functions I, g and h are approximated numerically.

When several exponents p < 1 are present, the lowest one must be used. This was shown in
Ref. [4] as follows. Consider than an exponent p* which differs from the actual value of p is
used, Le. u-rA9P*F*(9,4». The stresses then are (F;j-aula9-rA(JP- 1F(9,4» for the exact
solution (if p = 0 is excluded) and rA(JP*-l F*(8, 4» for the numerical solution. Equating these
two expressions for (Fjj, one obtains F*«(J, 4» = 9P-P*F«(J, 4» where function F is bounded. If
one chooses p* > p, function F*(9, 4» can obviously become unbounded as 9~O, which cannot
be adequately represented numerically. Thus p*:s p is necessary, and the best choice is to
make p* equal to the lowest exponent p present.

In the case of a crack front edge which terminates orthogonally at body surface, not only
p =1/2 but also p =0 is present in the exact solution [1] (and the authors are obliged to Prof. J.
P. Benthem of Delft University of Technology for pointing this out). Therefore, it is necessary
to take p =0, in which case f =F, g =0 and h =H. Because p =1/2 is present, too, the
convergence rate must be less than quadratic. For crack edges which terminate at the surface
obliquely, the exact solution is not known. Nevertheless, exponent p = 0 was assumed for all
numerical calculations of cracks that terminate at the surface. However, for the case of a sharp
corner that lies within the solid on the front edge of a planar crack, the exact solution (for Mode
I) is known and involves only p = 1/2; in that case p = 1/2 was, therefore, considered in
numerical calculations, and the practical convergence rate indeed appeared to be quadratic,
O(h2

).
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4. FINITE ELEMENT SOLUTION

Analogous problems of potential theory have previously been solved by finite difference
method in (6, cf» plane. In the elasticity problem, however, formulation of the stress-free
boundary conditions in spherical coordinates by finite differences would be rather complicated,
and further complexities would arise from the use of a nonuniform grid. Thus, it is ad­
vantageous to adopt the finite element approach, in which the stress-free boundary conditions
are automatically implied.

Choosing a finite element grid in the (0, cf» plane, we may represent the unknown functions
F, a and H within each finite element in the form

F(0, cf» = 2.;XiFi,

0(0, cf» = 2.iXiOi,

H(O, cf» = 2.iXiHi,

Fi = pPfi(O, cf»

Oi = pPgi(fJ, cf»

Hi = pPhi(O, cf»

(10)

in which Xi (i = 1,2, ... M) are the nodal values of f(O, cf», g(6,4», h(O,4» and p(O,4»,
gi(O, 4», hi(6, 4» are given distribution functions within the finite elements, normally chosen as
polynomials in 6 and 4>. Denoting by Om and 4>m the coordinates of mth node, the distribution
functions must be chosen such that P(Om, 4>m), gJ(Om, 4>m) and hk(6m, 4>m) equal 1 if i = 3m - 2,
i = 3m - 1 and k = 3m, and equal 0 for all other values of i, i, k.

Following the standard procedure in finite element method[l7] (see Appendix B), the
variational equation (7) leads to the following system of M algebraic linear homogeneous
equations for nodal unknowns Xi:

(i=I,2, ... M) (11)

in which the stiffness coefficients are calculated as:

k - ff {", iFJ +'" i D J +'" i F J +'" iOJ +'" i a j +'" i a i +'" iHJij - A 'l'F 'l' F6
r 8 'l' F~ q, 'l'G 'l'0 6 8 'l' G~ q,. 'l'H

(12)

Here PI = aFi/ao, etc. and <l>J, ... <l>k~ are given by eqn (6) after the substitutions F =

pPP(8. 4». G = pPgl(8. 4» and H = pPhl(8. 4» are made. which must include the derivatives; e.g. H8
is replaced by a[pph i(8. 4> )]/a8.

Equation (11) is a system of M algebraic linear homogeneous equations for nodal unknowns
Xi' The problem is to find the A-values greater than -1/2, for which eqn (11) has a non-zero
solution (eigenvalues). Of main interest is the smallest such A-value, which gives the dominant
field near point O. All stiffness coefficients, not just the diagonal ones, depend on the singularity
exponent A, and so the eigenvalue problem is a generalized one. It is also nonlinear because kij

depend on A nonlinearly. Various methods of numerical eigenvalue search were discussed in
Ref. [5J, and method B from p. 234 of Ref. [5] has been adopted for the present problem. It
consists in choosing A, forcing one specified Xk-component to equal 1, and using then a
standard equation solving subroutine for banded nonsymmetric equation systems to solve all
other Xi and the r.h.s. Rk of the kth equation. This procedure is then iterated and A is varied
according to Newton method until the A value for which Rk = 0 is found. (This method has
originally been programmed for solving critical loads of large frameworks [18], which also leads to
a problem of the form of eqn 11.) An extended method of solution for problems where A is
complex has been described in Ref. [8].

It is interesting to note that stiffness coefficients kiP) are quadratic polynomials in A. This is
because all terms of the variational principle (eqn 8) are quadratic polynomials of A (eqn 6).
Accordingly, the matrix of eqn (11) may be written as [kiJ] = k =a + bA + cA 2 where a, b, care
real square matrices which are of size (M x M) and are independent of A. So; eqn (11), kX = 0,

55 Vol. 15, No. 5-0
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takes the form
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(13)

where X = column matrix of Xi. This is a quadratic eigenvalue problem.
Equation (13) allows reduction in the number of computations needed when kij is to be

repeatedly evaluated for various A-values in an iterative eigenvalue search. It suffices to
determine three matrices a, band c, which are independent of A, and then evaluate k for a given
A from them.

Equation (13) could further be converted to a linear generalized eigenvalue problem for a
matrix of doubled size (2M x 2M); this, however, would not be effective-for numerical solution.
Furthermore, it is useful to observe that complex eigenvalues of eqn (11) or eqn (13), if any, can
occur ~~ in conjugate pairs. This is because k(A)X =k(A)X =k("A)X so that if k(A)X =0 then
also k(A)X = 0, where a superposed bar denotes a complex conjugate.

5. LACK OF SYMMETRY AND NON-EXISTENCE OF A MINIMUM PRINCIPLE

As a consequence of the integration by parts with respect to r (eqn 5), the integrand of eqn
(8) is nonsymmetric, and so is the system of linear equations, eqn (11) (kij~ k ji), as well as the
coefficient matrices a, b, c in eqn (13). This means that it is impossible to find a functional W
such that c5W = 0 would yield eqn (7), which greatly complicates the numerical solution. For a
solid that is elastic this might seem surprising at first. However, a deeper examination reveals
that it must be so.

One simple consideration which suggests that eqn (11) may have to be nonsymmetric is as
follows: If the matrix were symmetric and eqn (11) represented a standard eigenvalue problem,
all roots A would be real. This would be, however, impossible because the same variational
principle also holds for plane strain problems with two-material interfaces, in which complex
eigenvalues A (oscillating singularities) are known to exist. This contrasts with the analogous
potential theory problem, for which a symmetric variational formulation exists [5], and all roots
A are indeed real.

To prove that the variational equation must be non-symmetric, it is sufficient to show that it
must be so in the special case of plane elasticity, which is obtained by dropping integration over
(J and substituting (J = 7T/2, and setting G = v = O. In that case, the most general quadratic
functional involving F(q,), H(q,), F'(q,) =dF/dq" H'(q,) =dH/dq, is

W = f't G(A 1F
2+A2P'2 +A3H2+A4H,2) +AsFF' +A6FH +A7FH'

+ AsP'H +A9F'H' +A toHH'] dq,. (14)

The associated Euler equations are

AIF - A2F" + A6H + (A7 - As)H' - A9H" = 0

A3H - A4H" +A6F - (A7 - As)F' - A9F" = 0

and the corresponding natural boundary conditions at q, = 0 or q, = q,t are

A2F' +AsF +AsH +A9H' = 0

A4H' +A7F + A9F' +AIOH = O.

(15)

(16)

The actual differential equations for F and H, as obtained by substituting u = rAF and w = rAG
into the planar differential equations of equilibrium in polar coordinates r, q, (see Karp and
Karal[15]) have the form

(17)
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and the actual boundary conditions are

C3(c I F' - C2H) =0

C4(c3H' + C4F) = 0

411

(18)

where Ch C2, C3 and C4 are arbitrary non-zero constants and ao, ah a2, bo, bh b2, Ch' •• C4 are
certain given constants. Equating the coefficients of all corresponding terms of eqns (15) and
(16) with eqns (17) and (18) one obtains a system of 14 linear algebraic equations for
A h ••• A IO, Ch ••• C4• Unknowns A h • •• AIO can be easily eliminated, which leaves a system of
four linear equations for Ch ••• C4 which are homogeneous. The determinant of this equation
system is found to equal A. Because A cannot be restricted to equal 0, it foUows that Ch ••. C4

cannot be non-zero. Thus, there is no way to make eqns (17), (18) equivalent to eqns (15), (16),
which means that a variational functional W does not exist for the plane problem. So, it cannot
exist for the three-dimensional problem as well.

The possibility of complex eigenvalues A contrasts with the situation in the analogous
problem of the potential theory [5]. That problem can also be written in the form of eqn (13) but
it can be simplified to the form aX - KdX =0 where K =A(A +1), which is a generalized linear
eigenvalue problem for K. Because a and d are symmetric positive definite matrices, K is always
real and positive. Moreover, because A= -(1/2) ± «(1/4) +K)I/2, all eigenvalues A are also real.

6. ENERGY RESTRICTIONS FOR CRACK PROPAGATING AT SURFACE

As the crack propagates, energy flows into all points of the crack front edge and is
consumed by the process of separation (creation of crack surfaces). The energy flux near the
points of the crack front edge may generally have two components: the flux Eo which flows into
the crack front edge, and the flux Eo which is parallel to the edge.

Energy flux Eo may in general be expressed by Rice's J-integral[19] over a small circle L of
radius ro around the crack front edge:

~ (
1 au/)Eo = - U';E" dy - na/' - "0 d'"L 2 q q J J ax 0/

(19)

in which dy=rosint/JdcP and a/ax = cos cP(a/arl)-(sin cP/rl)(a/acP), rl=rp. On physical
grounds, flux Eo must obviously be positive, non-zero and finite (bounded) at all points near the
terminal point 0 of crack edge. Furthermore, flux Eo may reasonably be expected to be constant
along the crack edge[4], assuming that the energy needed for surface creation is the same at all
points of the crack front edge; however, this last requirement is not essential for the subsequent
deductions.

Near the surface terminal point 0 we have u/ - rA where - denotes proportionality. Hence,
aut/ax - rAlrp - rA-I, Elf - Uti - rA

-
1
, Eo- roA-1roA-1ro = r02A

-
1. Thus, for Eo to be bounded and

non-zero as ro~O, it is necessary that Re(2A -I) = 0 or

Re(A) = 1/2 (propagating crack). (20)

for any crack that propagates[4].
Alternatively, we may consider the variation of the stress intensity factor, K, along the

crack front edge. For Re (A) < 0/2), K approaches co as r~O and for Re (A) > 0/2), lim K = 0
as r~O (see Cin Fig. 9). None of these is physically admissible for a propagating crack, and so
we see again that Re (A) = (1/2).

From energy considerations, further restrictions may be deduced. The flux of energy into a
sphere of radius ro (centered at the surface terminal point 0) as point 0 propagates may be found
to be proportional to r02A

• The flux of energy into point 0 is obtained in the limit for ro~O, and
it must be zero, because the trace of point 0 as it moves is a line, and a line can be associated
only with a negligible amount of surface energy. This requires that for a propagating crack
Re (A) > 0, which is a weaker restriction than the previous one.

For cracks that do not propagate, the only restrictions are that the strain energy within a
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small sphere about point 0, as well as the strain energy (per unit length of edge) within a small
cylinder whose axis coincides with the crack front edge, be integrable. These conditions yield

I
Re(p»O or p =0, and Re(A»-2 (stationary crack). (21)

7. DEVELOPMENT OF COMPUTER PROGRAM

The finite elements were introduced as four-node quadrilaterals in the (8, q,) plane, obtained
by mapping of a unit square. The basic distribution (shape) functions t(8, q,), gi(8, q,) and
h i(8, q,) on the original rectangle have been considered as bilinear, i.e. as a+b8 + cq, +d8q,.
The stiffness coefficients kii have been evaluated by Gaussian numerical integration, using nine
integration points per quadrilateral (see Appendix B).

The program developed (listed in report[20» is general and capable of handling diverse
types of three-dimensional singularities, such as the crack front edge intersecting body surface,
for any angle of the crack edge as well as crack plane; the edge of a two-plane or multiple-plane
notch (with arbitrarily inclined planes) intersecting a body surface; the apex of a pyramidal
notch, consisting of several planes at any angle; the crack front edge intersecting a notch edge
or notch apex; the conical notches, possibly with a crack or another notch edge intersecting the
cone apex, etc.

To check the program, various simple cases of known solution have been considered [4].
First, various elementary solutions have been substituted into eqn (tl) written for a crack
whose front edge is normal to body surface, so as to see whether the r.h.s. are indeed
approximately zero, as indicated by the condition II kitXil/IlkitXil < 10-4

• These test cases
included: (a) three rigid body rotation fields, for which A= 1 and p = 0; (b) the displacement for
homogeneous uniaxial stress in the direction 8 = 1T/2, q, = 0, for which A= 1, p = 0; (c) the
near-edge plane-strain field of Mode I crack for II = 0, for which A= p = 1/2; (d) the same for
Mode II crack, for which also A= P = 1/2; (e) homogeneous strain fields with various strain
components being non-zero and constant (A = 1, p = O); (f) the antiplane (Mode III) near-edge
field (A = p = 1/2). Cases (e) and (f) do not satisfy all stress boundary conditions, and so in these
cases only the fulfillment of the equilibrium equations for the interior nodes was checked.

Furthermore, the program was checked against the known analytical solution for a sharp
corner of angle a on the crack front edge of a planar crack within a solid. In this case the stress
boundary conditions at the bottom side of the domain in Fig. 1 (8 = 1T/2) must be replaced by

01
/'=0, (3=7r/2

b) r =0

c)

Fig. I. Spherical coordinate system at termination of crack front edge 00' at body surface. (a) orthogonal
crack; (b) inclined edge; (c) inclined edge and inclined crack plane; (d) generally inclined notch. (The unit

sphere is shown only to visualize the coordinates; the body is semi-infinite.)
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boundary conditions of symmetry (symmetric v, antisymmetric 'TrlJ and 'T~ i.e. v =g =0 and
'TrlJ = 'Tq,8 =0 at 0:::: 1T'/2). For the opening mode (Mode I) of such a crack, a crude finite
difference solution based on a reduction to potential theory was given in [5] (yielding A:::: 0.296
for a = 1T'/2 and all v), and a very accurate solution by means of singular integral equations has
recently been obtained by Keer and Parihar[lO] (yielding A= 0.2966 for a = 1T'f2); the result of
the present program (A = 0.296), obtained by extrapolation from grids of up to 128 elements,
agreed satisfactorily (see Figs. 3 and 4).

The antisymmetric mode for the same crack (characterized by u sin 0:::: V cos 0 and Uq,p = 0
at tP = 1T'), also solved by Parihar and Keer[lll, is irreducible to potential theory and depends
on v, giving values A= 0.2966 and 0.3285 for v 0.0 and 0.25. The present program (for the
aforementioned grid) yielded A= 0.296 and 0.329.

8. NUMERICAL RESULTS FOR SURFACE CRACKS AND ANGLE OF PROPAGATING CRACK

The main objective was to find the singular stress field near the point where a crack runs
into the surface of the solid. This field corresponds to the smallest eigenvalue A (such that
A> -1/2). The solutions were obtained not only for cracks whose front edge is normal to the
surface, but mainly for cracks whose front edge and plane form arbitrary angles f3 and 'Y with
the solid surface (see Figs. la-c). Mode I for orthogonal crack edge has been solved analytically
by Benthem[ll, but no analytical solution is available for the oblique cases. (For all cases it has
been assumed that p = 0.)

The domain in (8, tP) plane which is to be solved is depicted in Fig. 2(a), along with the densest
finite element grid used (a 12 x 24 grid, giving a system of 975 equations of band width 89). In
the special cases which exhibit symmetry with respect to the crack plane ('Y :::: 0), one needs
only one half of the grid, and the densest grid used is shown in Fig. 2(b). Otherwise (for 'Y;'! 0)
the whole domain (0 ~ tP ~ 21T') must be solved. The grids have been generated automatically.
The vertical grid lines are the meridians of the spherical coordinate system. The bottom

1'= a
e 13= 7T/2

7Ti2

bl

a 7T/2

TO~m!mffitg-;<:p1b
~ i--

37r/2

e

r- .. I J i 1+ '.-- <:p
:::::: -... J--.

;: ::::: f:=:: I--
__f-

~ --::::r::::--. --:::- ::---r--
"t::::r:::- :::::::::::r;:;=------v I

..........1-- --v........ -- I,
7T/2

Fig. 2. Finite element ~ds used for inclined cracks. (a) both edge and crack plane inclined; (b) inclined
edge, normal crack plane.

b) MODES II and mIAntisymmetnc
(3 =3/4 7T opening)

N=18
0.8

.w,
1.4 thO.O, A..oct' 0.2966

r'O.25, Aexact '0.3285

N:; number of fjnitt elements

-~ 1.0
~

r!
.-< 12·

N=128
A. .XQC! ' 0.2966

N ::: numb"r of finit. tt.mtnts

01 MODE I (Symmetnc opening)

N=18 f3 o3/47T

1.0

1.6

01
E,

,
,,< 1.4

1.8 1.6 '----+----l--_+_
0.6 0.7 OB 09 1.0 1.\ 06 07 0.8 0.9

1/2 log N 1/2 log N

Fig. 3. Finite element convergence pattern for right angle corner at front edge of planar crack inside elastic
body. (a) Mode I; (b) Modes II and III.



414 Z. P. BAZANT and L. F. ESTENSSORO

0.50 bJ MODES nand mIAntisymmetnc opening I
{3 =3/t.Tr

+

I
100 120

t
18

~
T

A=0.2966
Iexact I

----_._-----------------,
aJ MODE I (Symmetnc opening I

{3=3/t.Tr

0.35

0.40

1000/ Nml2

Fig. 4. Extrapolation of numerical results to N --+ 00 for the case in Fig. 3.

boundary of the domain is a great circle of the unit sphere which is given by the equation

(J = (J = arctan (tan (3).
b cos 4> ' if (J < 0 then (J ~ (J + 71'. (22)

The nodal subdivision of each meridian was uniform.
Grids with nonuniform subdivision of the meridian, refined toward the pole, were also tried

(Fig. 5) (for f3 = 71'/2, 'Y =0). Although the results for the same maximum size of element were
better, the results for the same total number of equations were no better than those for uniform
subdivisions (see also Ref. [4]). So, nonuniform subdivisions would be ineffective.

The stress boundary conditions on the crack surfaces (4) = 'Y and 4> = 'Y +271') and on the
half-space surface «(J = (Jb) are automatically satisfied by the finite element equations (which
brings about a tremendous simplification compared to the finite difference method). The
boundary conditions at (J = 0 (pole, top side of the domain in Fig. 2) are irrelevant and none
have been imposed. To implement a statically determinate support of the body, one node may
be fixed in the 4> direction to prevent rotation about the polar axis. However, since rotation
implies A = 1, the support is normally not necessary unless A = 1.

If the crack plane is normal to the body surface ('Y = 0), only half the domain from Fig. 2(a)
need be solved (see Fig. 2b) because there exists symmetry with respect to the plane 4> = 71'. In
case of the symmetric (Mode I) crack opening, one must impose for all nodes at 4> = 71' the
condition w = 0, i.e. h = 0, while the symmetry conditions for stresses, namely Tq,r = Tq,8 = 0, are
automatically satisfied by the finite element method as natural boundary conditions.

In case of antisymmetric crack openings the question of proper antisymmetry conditions is
more complicated, and it appears that Modes II and III cannot exist separately at the surface
point (which was first suggested by L. M. Keer of Northwestern University in a private
communication). Indeed, it is impossible imagining the conditions of zero stress at the
half-space surface to be satisfied by a displacement field that exhibits either Mode II or Mode
III antisymmetry. The calculations confirmed this; i.e. when the full domain 4> E (0,271') was
used and Mode II antisymmetric displacements were enforced in two symmetrically located
nodes at the crack surface (u = 1 at 4> = 0 and u = -1 at 4> = 271', both at (J = 71'/2), the v

displacements at (J = 71'/2 were found to be non-zero and exhibit perfect antisymmetry about
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c/J = 1T, which is characteristic of Mode III. Thus, one may impose at c/J = 1T either u sin (J ­

v cos (J =0 (Mode II-type condition), or u cos (J - v sin (J =0 (Mode III-type condition) or any
linear combination of these two conditions, among which the simplest choice is u = v = O. The
exponent A in either case is the same, and because it belongs to a combination of two modes, A
is a double root. The antisymmetry condition for stress in both modes is UtH = 0 at c/J = 1T, and it
is again automatically satisfied by the finite element method as a natural boundary condition.

An idea of the accuracy and convergence was given in Ref. [4]. Eigenvalue A was solved for
" = 0, in which case the exact value is known to be A := 0.5. Grids of increasing numbers of
identical rectangular finite elements on the «(J, c/J) plane were used; N = 18, 32, 72 and 128,
corresponding to subdivisions 3 x 6, 4 x 8, 6 x 12 and 8 x 16 in the (J and c/J directions. For the
finest grid, which gives a system of 459 equations of bandwidth 65, the result was A = 0.5097,
which is still 1.9% in error. Finer grids would necessitate lavish computer funding. Higher order
finite elements would no doubt improve accuracy drastically. However, this appeared to be
unnecessary, since the convergence pattern can be exploited to greatly improve the accuracy,
provided that the grids for various subdivisions are all similar, generated according to the same
rule [4]. The numerical calculations indicated that the convergence is monotonous and of power
type. In the case of " =0, exponent p =0 is absent from the exact solution, and so one may set
p = 1/2 on the basis of the previous discussion; then t, g and h have no gradient singularity, and
a quadratic convergence should take place. This means that the plot of log (A - 1/2) vs log V(N)
(see Fig. 2 of Ref. [4]) should be a straight line and should have the slope m = 2. Numerical
results confirmed this to be true [4]. The plots of A vs lOOO/N should also be straight lines, and
they indeed are, which allows extrapolation to N ~ 00. This extrapolation provided A = 0.500
with an error not exceeding 0.001.

Subsequently, the case of orthogonal crack edge was solved for various values ,,> O. For
cracks of Mode I as well as Modes II and III, the results are given for various grid subdivisions
of the half domain (half in view of symmetry) in Figs. 6 and 7. In these cases, the exponent
p =0 is known to be present, together with p = 1/2. So, p =0 had to be introduced, causing
functions t, g and h to exhibit gradient singularities. Therefore, quadratic convergence could
not be expected. Nevertheless, it was assumed that the convergence is at least of power type
O(h m

), with m < 2. To determine m, the results of A for various grids were plotted vs lOOO/Nm12

for various chosen values of m, and each of them was fitted by a straight line (computationally).
Then, the value of m that gives the best straight-line fit (the smallest sum of square deviations)
was determined in the program (Fig. 6). The resulting value of m represents the rate of
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convergence, which was always quite close to quadratic, with m varying between 1.7 and 1.9.
For oblique cracks, m varied between 1.3 and 1.8.

The extrapolations to N 00+00 obtained with the optimum m-values are plotted in Figs. 8(a)
and 8(b). They agree with Benthem's results for Mode I cracks[l] within about 0.4% for all II

between 0 and 0.48[4]. This is a strong mutual confirmation for the accuracy and correctness of
the Benthem's solution as well as the present solution. No solution seems to exist in the
literature for Modes II and III (Fig. 8b).

Kawai obtained for this problem A =0.3 for" =0 as the lowest root[2]. This disagrees with
Benthem[l] as well as our solution. The r.h.s. Q of one of the equations whose vanishing is
used to find the root (see method B in Ref.[5]) is shown within Fig. 6 to demonstrate that the
plot is very smooth and no eigenvalue A near 0.3 could have been missed.

According to eqn (20), a crack which propagates or for which propagation is imminent must
exhibit A = 1/2 (the exponent being assumed to be real if there are no dissimilar materials). This
case is of the greatest practical interest by far. For the orthogonal crack edge, propagation is
obviously possible only if ,,= O. Therefore, we must ask whether there exist inclinations f3 of
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the crack front edge and 'Y of the crack plane for which A= 1/2. Calculations indicated that
indeed for each chosen 'Y there exist p-values for which A= 1/2; see Figs. 9 to 11.

To obtain accurate values of p for each chosen 'Y, the approach to the eigenvalue problem
was modified by treating kij as a function of p rather than A (because A is fixed); i.e. eqn (11)
was treated as [4]:

M

~ kiiU3 )Xj = 0
j=1

(i = 1,2, ... M). (23)

The eigenvalue search routine[5] based on Newton method was converted to a search for p
instead of A.

First the results were obtained for cracks whose plane is normal to body surface ('Y = 0)[4],
and it was rather interesting to observe that the values of p for the symmetric opening (Mode I)
and for the antisymmetric opening (Modes II and III) were different; the former case gives an
obtuse angle (P > 90°), i.e. the surface point trails behind the interior crack edge, and the latter
case gives an acute angle (P < 90°), i.e. the surface point moves ahead of the interior crack
edge. This has an important physical consequence: at the terminal point a combined mode
propagation is impossible, i.e. the crack assumes such a shape that its surface terminal point
propagates either with a symmetric opening (Mode I) or with an antisymmetric opening (Modes
II and III), but not both combined.
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As the crack plane becomes inclined (y;>! 0), the ~·values for Re (A) == 0/2) vary as a
function of y, as is seen from the numerical results in Fig. 11. In these cases it is no longer
possible to distinguish between symmetric (Mode I) and antisymmetric (Modes II and III)
openings, for there is no geometrical symmetry. For each of the two ~·values, there exists at
point 0 a certain limiting ratio K 1 : K 2 : K3 of the stress intensity factors for Modes I, II and III,
and no other ratios are possible. So, for cracks of inclined plane the propagation at the surface
point takes place always in a combination of all three modes. Conversely, for a given ratio
K 1: K2 : K 3 one can generally find the angles (3 and y which must get established at the surface
point.
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Some recent experimental results (pointed out to the writers by G. Sendeckyj of Flight
Dynamics Laboratory, Dayton, Ohio) allow a check. These are the fatigue loading fracture tests
made by Bell and Feeney[21] (to whom the writers are obliged for making available their
results). Their photographs, reproduced in Figs. 12 and 13, show the crack arrest marks
observed in fatigue Mode I fracture tests of aluminum alloy and titanium alloy specimens.
According to materials handbooks. IJ is about 0.33 or 0.32, respectively, for which our solution
(Fig. 10) gives {3 "" 102° for both materials. These angles are plotted and compared in Figs. 12
and 13. Qualitatively, the observed trend agrees in that the surface point trails behind the
interior crack edge (i.e. (3 > 90°) rather than moving ahead. The numerical value does not agree
closely, but considering that some small-scale yielding and inelastic strain reversals occur in the
actual tests, and that the plastic "shear-lip" phenomenon can alone also cause {3 > 90°, the
comparison cannot be qualified as poor.

Some cases of notches terminating at the surface have also been run. The results for {3 = 1T/2
(orthogonal edge), and IJ = -a (symmetry) are shown in Fig. 14.

Problems with two-material interfaces
In case of surface singularity of an interface crack or intersection of the crack front edge

with a two-material interface, A must be expected to be complex, and so must be K jj and ~.

Conversion of the program to complex arithmetic [20] is straightforward and is achieved by
COMPLEX type declarations of proper FORTRAN variables. Some difficulties were, however,
caused by the need for an equation solving subroutine for complex banded nonsymmetric
matrices. Such a subroutine has not been available in standard software packages, and so it had
to be developed (and is listed in Ref. [20]). Furthermore, the iterative root search, described
below eqn (12), had to be generalized so as to iterate for two simultaneous conditions:
Re(Rk ) = 0 and Im(Rk ) = O. Of these, the second one always converged much faster than the
first one. However, it was necessary to start the iterations with a rather good initial estimate of
A. For this purpose, the plane of Re(A) and Im(A) was first scanned to find where the points of
minimum value of (Rk )2 lie, and those were then taken as the starting values for the iterations.
As for the extrapolation based on meshes of different size, it was used only for Re(A) and not
for Im(A) where no systematic convergence was found to exist.

The program was checked for giving correct numerical results in various check cases. For
example, the three-dimensional case of a rigid stamp of wedge shape of angle 0.28861T, bonded
to a homogeneous elastic halfspace surface of IJ =OJ and subjected to a displacement parallel
to the surface gives A= 0.2475 :to.0409i (obtained analytically by L. M. Keer), while the
program yielded Re(A) =0.2405 (for N -+ 00) and Im(A) =0.0451 (for N = 128). The plane strain
problem of an interface crack between two materials which both have IJ = OJ and have a 40: I
ratio of E has the solution A= 0.5:t 0.0878i [22], and the present program yielded Re(A) = 0.498
(N -+ 00) and Im(A) = :to.087i (N = 124).

When IJ = 0 for both materials, the plane strain solution[22] also applies for our surface
singularity with orthogonal crack edge; for a 2: I ratio of E this gives A= 0.5 :t 0.0535i whereas
the program yielded Im(A) =0.0514 for N = 128. For the same case but IJ > 0 no solutions have
been given before; our program gives Im(A) = :to.0399 (N = 128) for IJ =0.05 and :to.OO6 for
IJ =OJ, and we see that Im(A) decreases with increasing IJ. For IJ =OJ and a 30: 1 ratio of E,
the program indicates Im(A) to be 0 or almost O.

The front edge angle of a propagating interface crack in a plane orthogonal to the halfspace
surface must satisfy Re(A) = 0.5 and also depends on the E-ratio of the two materials.

When an interior crack plane is orthogonal to two-material interface, the program indicates
that a crack with a front edge orthogonal to the interface has A= 0.545,0.521 and 0.499 for E-ratios
1: I, 5:0 and 10:0 and IJ = OJ (N -+00).

For complex A, the displacements oscillate along the radial rays, which implies a physically
impossible overlap of crack surfaces. However, for plane-strain Mode I crack the region of this
oscillation is usually extremely small and beyond this small region the solution appears to be
meaningful and accurate [23]. It is not clear whether this also applies for the foregoing
three-dimensional singularities. A physically meaningful solution which takes into account the
contact stresses on crack surfaces has recently been developed [23]; but its adaptation is
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beyond the scope of this study and we must content ourselves in the meantime with the less
than perfect oscillating (complex) crack singularity. Note, though, that in many cases the
complex singularity does not violate any contact conditions; e.g. when we have a notch of finite
angle and a two-material interface emanates from the notch edge.

CONCLUSIONS

The finite element method in angular spherical coordinates provides a powerful general
technique for determining three-dimensional elastic singular stress fields. The numerical results
for cracks whose edge is normal to the surface are in close agreement with the analytical
solution of Benthem. The front edge of propagating crack must terminate at the surface point
obliquely, at a certain angle which is a function of the inclination of the crack plane and Poisson's
ratio. For each combination of crack edge angle and crack plane angle only one certain ratio of the
three stress-intensity factors is possible, H the crack plane is orthogonal, the surface point for
Mode I opening trails behind the interior of the crack, while for Modes nand m the surface point
moves ahead.
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APPENDIX A
Proof of the variational principle

Since the derivation of the basic variational equation (eqn 7) involves an unorthodox step-integration by parts with
respect to only one coordinate, r, a step which destroys the symmetry of the functional, it is appropriate to check that the
Euler equations associated with the variational equation are the correct differential equations and natural boundary
conditions for functions F, G and H. To deduce the Euler equations, one may apply Green's integral theorem in the plane
(9,4» with 9 and 4> regarded as cartesian coordinates, so as to get rid of derivatives of 8F, 80 and 8H. By this procedure,
eqn (7) for C = const. may be brought to the form

in which

and

with

ffA (X~F + X.8F + X</>8H) sin 9 d9 d4> - r(p~F + p.80 + p</>8H) ds = 0

x, = (Q +2)(A - 1)(AF + F + O. + 0 cot 9 + si~ 9 H</> ) - [(A + 1)0. - F••l

-cot 9[(A + 1)0 - F.]+~ (~F</>4> -H</> -AH</» =0
Sin Q Sin Q

(
I I cos 9 )X. = (Q + 2) AF. + 2F. + 0 .. + O. cot 9 -~ 0 +...,--,; H9<I> -~ H</>

Sin Q Sin Q Sin Q

-~ (H.</> + H</> cot 9-~0</></» +A[(A + 1)0 - F,] =0
Sin Q Sin Q

p, = Srlin. sin 9+ s,</>n</> = 0

p. = s..n. sin 9 + s.</>n</> = 0

p</> = s,</>n. sin 9 + s</>4>n</> = 0

I
Srli=-2A_,urli=AO-O+F.

lir

s•• = ---k u" = Q (AF +2F + O. + 0 cot 9 + -._1- H</» + 2(0. + F)
~ ~9

(AI)

(A2)

(A3)



Surface singularity and crack propagation

I I
s~ = 2p.r'-1 u~ =He-Hcot8+ sin I/O.

I I
Sr4>=2 J.-IUr4>·=~8F.+AH-Hp.r SID

S.. = p.~-1 U.. = Q (AF + 2F + G. + G cot 8 + si~ 8 H. ) + 2 (si~ 8 H. + G cotfJ + F).

42S

(M)

Here s = length of the boundary curve of the region in the (8, t/!) plane; ds2= d82 + dt/!2; (n., n.) represents the unit normal
to the curve s in (8, t/!) plane in which 8 and t/! are regarded as cartesian coordinates, Le. n. = dt/!Ids and n. = -d8lds
(derivatives along curve s); u", ... u.. are the stress components in spherical coordinates; p. = shear modulus. Since eqn
(AI) must hold for any kinematically admissible SF, 8G and SH, it implies that

p,=o,
X. =0,

p. =0,

X. = 0 (within A)

p. =0 (on s).
(AS)

It can now be checked that these equations are identical to those which arise when eqns (4) are substituted into the
well-known[12] differential equations of equilibrium in terms of u, v and HI:

(A + 2p.)r sin 8 ~~ - 2p. fai (id. sin 8) - ~~} = 0

(A + 2p.) sin 8 ~~ - 2p. e;-f, (rid. sin 8)} = 0

(A + 2p.) -.'- iJtJ. - 2p. {!.... (rid.) + iJid,} = 0
SID 8 iJt/! iJr iJ8

where Aand p. are Lame's constants, tJ. is the cubical dilatation, and idn id.. and id. are the components of rotation:

• I {iJ -2' iJ . iJ }
I.> =? sin 8 ar(ru SID 1I)+"89(rv SID 8)+ iJt/! (rw)

2id, =? s~n 8 {ai(rw sin 11)- iJ~ (rv)}

2 . I {iJU iJ .)}W.=-.- ---(rwsm 8
rSID 8 iJt/! iJr

. I {iJ iJU}2w.=- -(rv)-- .
r iJr iJ8

(A6)

(A7)

For boundary conditions, eqns (4) must be substituted into the stress boundary conditions in terms of u, v and HI, which
are similar to eqns (A3) and are formulated in terms of stress expressions[l2]:

( I I I ) (I I )u.. =Ae+2p. -'-8H1.+-vcotll+-u, u,,=p. .v,--v+-u.r SID r r r r '

( I I I) ( I I )u~ = p. - HI. - - HI cot 8 +-.- v.' Ur4> = P. -.- u. + HI, - - HI
r r r SID 8 r SID 8 r (AS)

where e = u, + (2Ir)u + (1lr)ve + (1lr)v cot 8 + (1lr sin 8)v.. This proves that eqn (8) is correct and that the natural
boundary conditions are automatically implied, which is essential for allowing the use of the finite element method.

Instead of considering domain A in plane (8, t/!) and applying Green's theorem the same result can be obtained by
applying Stoke's theorem and considering that domain A is on a unit sphere, r = I. In this procedure, factor sin 1/ must not
be treated as part of the integrand in eqn (8), because the area element on the unit sphere is not d8 dt/!, as in the (8, t/!)
plane, but sin 8 d8 dt/!.

In a preceding paper, the same variational equation (eqn 8), was derived by a reverse procedure starting from the
differential equations (eqns AS). The present derivation from strain energy is simpler and more direct.

APPENDIX B
Formulation of finite element stiffness equations

For the reader's convenience, the derivation of finite element equations [4] will be sketched. According to eqn (9)

SF. =L Flsxp SGe =L G/SX;, 8H. = L H/8X;
j j i

(BI)
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Substitution of these expressions as well as eqns (9) into eqn (6) furnishes

(82)

Moreover, substitution of eqns (B 1) and (B2) into the variational principle, (eqn 8), provides a discrete variational equation
of the form

~ [~ kq(A).\I ] 8,Xj = o.

Finally, the condition that this equation must hold for any Bx,yields the aJaebraic equation system (eqn II).
The finite element stiffness coefficients for the quadrilateral element mapped from a square are calculated as

(B3)

in which

<II,j = [Q(I- A)+2I[(,\ + 2)pPji + (pP),i + pPg,' + ppgl cot 6+-t- ".;] - 2A('\ + 2)ppp. <II~. = ...•...
sIn 6

<Ilk.. =~ {[Q(A +2)pPji + (pp),gi + pPg,i + pPgi cot6+~ It~/] +2~It.i + pPgl cot 6+ pPf'}, (B5)
SID " SID " SID "

The finite element stiffness matrix is obtained by mapping the general quadrilateral element in (6. t/J) plane into a unit
square. The mapping is given by the transformation

where

B.. (Bh B2, B3, B4), Bi =~(1+ 6·6')(1 +t,6.t/J,). (i =k, I, m, n)

T" (Bt, 6" 8,.. 6ft ?, F= (t/Jb t,6" t/J,., t/Jft)T

(B6)

(B7)

(B8)

(B9)

(BIO)

in which superscript T denotes a transpose; (8', t/J,) are the comers (±I. ±I) of the unit square, numbered clockwise
beginning at (-1,-1); (6i,t/J;) are the corresponding comer coordinates of the quadrilateral element; (6·,t/J·) are the
coordinates of a general point within the unit square; and (6, t/J) are the coordinates of the corresponding point on the
quadrilateral element.

Carrying out the foregoing transformation of variables 6 and t/J to 6· and t/J., we may express the stiffness coefficients
given by eqn (12) in the well·known(24] manner:

k/I=ff '1'(6,t/J)d6dt,6=f
l

fl '1'*(6.,t/J.)d6.dt,6*
A -I -I

in which '1'(6, t/J) is the integrand of eqn (12), and

'1'*(6., ....)= '1'(8., "'*)J,' J IiJ(J/iJ6·, iJt/J/iJ6.,
Of' Of' = iJ6/iJt/J., iJt/I!iJt,6*

. where J is the Jacobian of the transformation in eqn (86). The numerical evaluation of the last integral in eqn (89) is
carried out by the Gaussian quadrature formula [241:

(BII)


